
Exploring Self-Supervised Representation Ensembles for
COVID-19 Cough Classification

Hao Xue
hao.xue@rmit.edu.au

School of Computing Technologies, RMIT University
Melbourne, VIC, Australia

Flora D. Salim
flora.salim@rmit.edu.au

School of Computing Technologies, RMIT University
Melbourne, VIC, Australia

ABSTRACT
The usage of smartphone-collected respiratory sound, trained with
deep learning models, for detecting and classifying COVID-19 be-
comes popular recently. It removes the need for in-person testing
procedures especially for rural regions where related medical sup-
plies, experienced workers, and equipment are limited. However,
existing sound-based diagnostic approaches are trained in a fully-
supervised manner, which requires large scale well-labelled data.
It is critical to discover new methods to leverage unlabelled respi-
ratory data, which can be obtained more easily. In this paper, we
propose a novel self-supervised learning enabled framework for
COVID-19 cough classification. A contrastive pre-training phase
is introduced to train a Transformer-based feature encoder with
unlabelled data. Specifically, we design a random masking mech-
anism to learn robust representations of respiratory sounds. The
pre-trained feature encoder is then fine-tuned in the downstream
phase to perform cough classification. In addition, different en-
sembles with varied random masking rates are also explored in the
downstream phase. Through extensive evaluations, we demonstrate
that the proposed contrastive pre-training, the random masking
mechanism, and the ensemble architecture contribute to improving
cough classification performance.

CCS CONCEPTS
• Applied computing → Sound and music computing; Health in-
formatics; • Information systems → Data mining.
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1 INTRODUCTION
By February 1st 2021, the total number of coronavirus disease 2019
(COVID-19) confirmed cases exceeded 103 million world-wide1,
and at the time of writing, it is still an ongoing pandemic. Given
that the global vaccination effort is still in its early stage, a practical
and effective defensive procedure against the highly contagious
COVID-19 is large-scale and timely testing, aimed at detecting and
isolating the infected individuals as soon as possible. Developing a
reliable, easily-accessible, and contactless approach for preliminary
diagnosis of COVID-19 is significant. It will also benefit regions
where medical supplies/workers and personal protective equipment
are limited. As pointed out by Imran et al. [17], cough is one of the
major symptoms of COVID-19 patients. Compared to PCR (Poly-
merase Chain Reaction) tests and radiological images, diagnosis
using cough sounds can be easily accessed by people through a
smartphone app. In the meantime, however, cough is also a common
symptom of many other medical conditions that are not related to
COVID-19. Therefore, automatically classifying respiratory sounds
for COVID-19 diagnostic is a non-trivial and challenging task.

During the pandemic, many crowdsourcing platforms (such as
COUGHVID2 [24], COVID Voice Detector3, and COVID-19 Sounds
App4) have been designed to gather respiratory sound audios from
both healthy and COVID-19 positive groups for the research pur-
pose. With these collected datasets, researchers in the artificial
intelligence community have started to develop machine learn-
ing and deep learning based methods (e.g., [5, 12, 17, 25, 27]) for
cough classification to detect COVID-19. Nevertheless, these meth-
ods share one common characteristic, that is they are all designed
and trained in a fully-supervised way. On the one hand, the fully-
supervised setting limits the applicability, effectiveness and impact
of the collected datasets, since the method has to be trained and
tested on the same dataset. This means additional datasets can-
not be directly used to boost the predictive performance and the
model is limited to the same source dataset. On the other hand,
such fully-supervised based classification methods inevitably need
to rely on well-annotated cough sounds data. The annotations are
from either experts or user response surveys. There are two in-
herent limitations of these annotation approaches: (i) Annotation
Cost: Annotation of a large-scale dataset comes at an expensive
cost (both financial cost and human power cost). In addition, unlike
the data labelling in other tasks such as image classification, the
annotation of respiratory sounds requires specific knowledge from
experts. This further aggravates the difficulty of obtaining accurate

1https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory
2https://coughvid.epfl.ch/
3https://cvd.lti.cmu.edu/
4https://www.covid-19-sounds.org/en/
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annotations. (ii) Privacy Concern: Although directly asking partici-
pants to report their health status (e.g., whether the COVID-19 is
tested positive or negative) during the respiratory sounds collection
avoids annotation cost, the medical information is highly sensitive.
Such privacy concerns also limit the distribution and publicity of
gathered datasets. For example, some datasets have to be accessed
by one-to-one legal agreements and specific licences.

In this work, to address the aforementioned shortcomings, we de-
sign a novel framework for COVID-19 cough classification, which
can easily leverage large scale unlabelled respiratory sounds. The
concept of the proposed framework is illustrated in Figure 1. Over-
all, it consists of two phases: a pre-training phase and a downstream
phase. The first phase is a self-supervised contrastive loss-based
representation learning process with only unlabelled respiratory
audios as training data. The purpose is to train a feature encoder
contrastively so that it can learn discriminative representations
from large amount of unlabelled sounds. In the downstream phase,
the weights of the contrastive pre-trained feature encoder are trans-
ferred and fine-tuned on the labelled downstream dataset. Except
for the loading of pre-trained weights, this phase is similar to other
fully-supervised cough classification methods. We pose the ques-
tion of whether the contrastive pre-trained weights could help the
downstream classification performance. While the self-supervised
contrastive representation learning has been successfully applied to
other domains such as images [7, 13], speech [18, 23], and general
audios [26], our work is the first attempt to explore self-supervised
representations for respiratory sounds and COVID-19 cough classi-
fication.

For the audio feature encoder (pre-trained in the first phase and
fine-tuned in the downstream phase), we adopt the popular Trans-
former architecture [31] which has been proved effective in many
other temporal data analysing tasks such as translation [9, 31], traf-
fic prediction [33], and event forecasting [32]. Considering that the
demographic distributions (e.g., age, gender, nationality of partic-
ipants) of the pre-training data and the downstream dataset may
be different, we explicitly design and introduce a random masking
mechanism to improve the generalisation of the feature encoder.
This mechanism randomly masks off some timestamps’ signals
in the input audio so that these masked values are removed from
the attention calculation inside the Transformer. It could avoid
the over-fitting on the pre-training dataset. We also exploit apply-
ing the same random mechanism in the downstream phase in the
experiments. Furthermore, we also investigate different ensemble
configurations with different feature encoder structure and random
masking rates to further improve the classification performance.

In summary, our contributions are: (1) We propose a novel frame-
work based on contrastive pre-training to take advantage of unla-
belled respiratory audios for representation learning. To the best
of our knowledge, this is the first paper using contrastive-based
representation learning to leverage unlabelled data for COVID-19
cough classification. This framework provides a new perspective for
the cough classification research. (2) We design a random masking
enabled Transformer structure as the feature encoder to learn the
representations. Applying the random masking in the pre-training
phase could provide effective and general representations, which
further boosts the classification performance in the downstream
phase. (3) Through extensive experiments, we demonstrate that the
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Figure 1: Concept illustration of the proposed framework. It
consists of two phases: a contrastive pre-training phase (the
upper part, described in Section 4.1) to learn representations
from unlabelled respiratory data; and a downstream phase
(the lower part, described in Section 4.2) for fine-tuning and
performing cough classification for screening COVID-19.

proposed framework outperforms existing methods and we also dis-
cover the ensemble configuration that yields the best performance.

2 RELATEDWORK
2.1 COVID-19 Cough Classification
Machine learning as well as deep learning based methods have been
introduced to automatically screen and diagnose various respiratory
diseases [1, 2, 4, 20, 22]. As for the deep learning neural network
architectures, there are two categories for COVID-19 cough classi-
fication. The first category is Convolutional Neural Network (CNN)
based. Even though typical CNNs such as ResNet [14] and VGG [29]
are originally proposed for processing images in computer vision,
the pre-processing techniques (e.g., Mel Frequency Cepstral Co-
efficients (MFCC) and log-compressed mel-filterbanks) transform
audio signals into 2Dmatrices and make it possible to directly apply
CNN structures for audio analysis. A CNN model with ResNet-18
as backbone is designed by Bagad et al. [3], whereas Schiller et
al.use an ensemble of CNNs to classify if a person is infected with
COVID-19 in [27]. For respiratory sound classification, Brawn et
al. [5] combines hand-crafted features and VGGish [15] (pre-trained
on Audioset [10]) extracted deep learning features.

The second category is Recurrent Neural Network (RNN) based.
Considering that audio data is inherently a type of temporal se-
quence data, modelling the recurrence dynamics [21] is another
technical road map for cough classification. RNN and its variants
Long Short Term Memory (LSTM) networks [16], Gated Recur-
rent Units (GRU) [8] are born for handling temporal sequence data.
Following this trend, Hassan et al. [12] and Pahar et al. [25] fully
explore LSTM-based COVID-19 cough classification by research-
ing and evaluating different sound features as input and LSTM
hyperparameters.

The proposed framework in this work differs from the above sum-
marised CNN or RNN based COVID-19 cough classification meth-
ods in the way of pre-training. Other existing methods with pre-
training step depend on conventional fully-supervised pre-training
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so that large scale labelled data is required, whereas we introduce
and design a contrastive self-supervised pre-training phase that
only requires unlabelled data for pre-training.

2.2 Self-Supervised Contrastive Learning
The core idea of contrastive learning is to learn how to represent
an input sample so that learned representations of positive pairs
(samples considered to be similar) are much closer than representa-
tions of negative pairs (samples considered to be different) in the
latent space. Recently, contrastive learning based self-supervised
pre-training has been proved successful and effective to learn repre-
sentations from unlabelled data in numerous work in other domains
such as images [7, 13] and speech [18, 23]. Using such pre-trained
representations could improve performance of downstream super-
vised tasks.

COLA [26], proposed by Saeed et al., is the most relevant ap-
proach in the literature to our proposed framework. It is a con-
trastive learning framework to learn representations from general
audios (i.e., Audioset) in a self-supervised manner. However, there
are two major differences between ours and COLA. First, how to
leverage unlabelled respiratory data for COVID-19 cough classifi-
cation remains untouched in the literature. We seek to develop a
framework to learn representations for respiratory sounds based
COVID-19 cough classification instead of representations for com-
mon audios in COLA. Second, COLA uses EfficientNet [30], a CNN,
as the feature encoder to extract representations from audio. Instead,
our model treats the audio as sequence data and utilises the popular
Transformer [31], an effective architecture that has shown great
promise in many other tasks, as the backbone for cough classifica-
tion. In addition, we propose a novel random masking mechanism
to work together with the Transformer as the feature encoder in
out framework.

3 COVID-19 RESPIRATORY SOUND
3.1 Coswara Dataset
Coswara dataset [28] is part of Project Coswara5 which aims to
build a diagnostic tool for COVID-19 based on respiratory, cough,
and speech sounds. Upon until December 21st 2020, there are 1,486
crowdsourced samples (collected from 1,123 males and 323 females)
available at Coswara data repository6. The majority of the partici-
pants are from India (1,329 participants) and the rest participants
are from other countries of five continents: Asia, Australia, Europe,
North America, and South America. Four types of sounds (breath-
ing, coughing, counting, and sustained phonation of vowel sounds)
are gathered from each participant.

3.2 COVID-19 Sounds
Similar to Coswara dataset, COVID-19 Sounds is another crowd-
sourcing based respiratory sound dataset. Audios are collected
world-widely with a web-based app, an Android app, and an Ap-
ple app. In our work, we choose the same curated dataset that is
introduced and used in [5]. After filtering out silent and noisy sam-
ples, in this released version of dataset7, there are 141 COVID-19
5https://coswara.iisc.ac.in/
6Coswara dataset can be accessed at https://github.com/iiscleap/Coswara-Data
7this dataset is available through one-to-one legal agreements.

positive audio recordings collected from 62 participants and 298
COVID-19 negative audio recordings from 220 participants. Both
coughs and breaths appear in these recordings. Positive samples
are from participants who claimed that they had tested positive for
COVID-19.

4 METHOD
As illustrated in Figure 1, the proposed method consists of two
phases: (i) Pre-training phase: to pre-train the feature encoder
with unlabelled audios through contrastive learning. (ii) Down-
stream phase: to fine-tune the trained feature encoder with an
additional classifier for COVID-19 cough classification. The details
of these phases are given in the following subsections.

4.1 Contrastive Pre-training
The pipeline of the contrastive pre-training is given in Figure 2. The
idea of contrastive learning can be summarised as: to encode audios
into a latent space through the feature encoder so that the similarity
of positive samples is larger than the negative samples in the latent
space. Therefore, three key components in this contrastive learning
phase are: (1) how to obtain positive/negative samples; (2) how to
design the feature encoder; and (3) how to measure the similarity
in the latent space.

4.1.1 Pre-processing and Sampling. The purpose of pre-processing
is to read and transform each raw audio file into a matrix format
which can be taken as input by the following feature encoder. Mel
Frequency Cepstral Coefficients (MFCC) and log-compressed mel-
filterbanks have been widely used in the audio analysis [5, 6, 11, 12,
25, 26]. Python Speech Features package8 is used for computing
log-compressed mel-filterbanks in our framework. After the pre-
processing, each raw audio file is mapped to a feature 𝑎 ∈ R𝑁×𝑇 ,
where 𝑁 stands for the number of frequency bins and 𝑇 indicates
the total number of time frames in this audio.

Since different audios in the dataset often have different lengths
and different 𝑇 values after pre-processing, we apply a sliding
window with window size 𝑇𝑤 to generate multiple clips for each
processed audio. The sampling of positive and negative clips is
then straightforward in our task. If clip 𝑖: 𝑎𝑖 ∈ R𝑁×𝑇𝑤 and clip 𝑗 :
𝑎 𝑗 ∈ R𝑁×𝑇𝑤 come from the same audio file, they are considered
as a positive clip pair. On the contrary, if they are sampled from
different audios, they form a negative pair. It is worth noting that
the sampling might be slightly different, depending on different pre-
training datasets. Let’s say, for example, there are four respiratory
sound files (fast/slow breathing sounds and deep/shallow cough
sounds) gathered from the same participant. So, if two clips are
from the same participant (any one or two from the four sound
files), they are the positive pair. Overall, after contrastive learning,
samples from the same person has a larger similarity in the latent
space than samples from different persons. Such positive/negative
sampling does not involve any annotated labels regarding the health
condition of participants.

4.1.2 Feature Encoder with Random Masking. The goal of the fea-
ture encoder is to embed each clip 𝑎𝑖 ∈ R𝑁×𝑇𝑤 into a representation

8https://github.com/jameslyons/python_speech_features
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Figure 3: Illustration of random masking mechanism. (a) Without random masking; (b) With random masking. The masked
inputs are shown as red circles and the masking rate is 40% in this example.

vector ℎ𝑖 ∈ R𝑑 . This step is formulated as:

ℎ𝑖 = 𝑓 (𝑎𝑖 ;W𝑓 ), (1)

where 𝑓 (·) (light yellow box in Figure 2) represents the feature
encoder and W𝑓 is the trainable weights of the feature encoder.
Similarly, ℎ 𝑗 ∈ R𝑑 for clip 𝑎 𝑗 is obtained. The dimension of a
representation vector is 𝑑 . In the proposed framework, we select
the popular and effective Transformer structure [31] as the feature
encoder 𝑓 (·).

As shown in Figure 3(a), the typical Transformer structure mod-
els the input sequence (𝑎𝑖 is considered as a𝑇𝑤 time steps sequence
and each time step is 𝑁 dimension) through the attention mecha-
nism. For each time step, the scaled dot-product attentions [31] for
every other time step are calculated. Given that we need to transfer
the pre-trained weights of 𝑓 (·) to the downstream dataset, such a
densely calculated attention mechanism might cause over-fitting
on the pre-training dataset. To this end, we introduce a random
masking mechanism (see Figure 3(b)) to make the feature encoder
robust. For a respiratory sound, the feature at each time step might
not be always meaningful. A collected sound sample often con-
tains noises such as a short pause between two coughs. This also
motivates us to design this random masking.

The masking generator (the blue box in Figure 2) generates a
masking matrix 𝑀 with a specific masking rate (this rate is ad-
justable hyperparameter). Based on the masking matrix and the
masking rate, some of the inputs are randomlymasked and removed
from the attention calculation in the Transformer. For example, in

Figure 3(b), with a 40% masking rate, 2 time steps (shown in red
circles) out of 5 time steps are masked. With the random masking,
Equation (1) is involved to:

ℎ𝑖 = 𝑓 (𝑎𝑖 , 𝑀𝑖 ;W𝑓 ), (2)

where𝑀𝑖 is the masking matrix for clip 𝑎𝑖 .

4.1.3 Contrastive Learning. As suggested inmany other contrastive
learning methods such as [7, 26], a projection head 𝑔(·) (see Fig-
ure 2) is applied to map representations (e.g., ℎ𝑖 and ℎ 𝑗 ) to the latent
space where the similarity is measured. To measure the similarity,
two metrics are used in the literature:

• Cosine Similarity: this metric is commonly used visual rep-
resentation learning such as [7, 13]. The similarity of a clip
pair sim(𝑎𝑖 , 𝑎 𝑗 ) is calculated by:

sim(𝑎𝑖 , 𝑎 𝑗 ) =
𝑔(ℎ𝑖 )⊤ · 𝑔(ℎ 𝑗 )

∥𝑔(ℎ𝑖 ))∥
𝑔(ℎ 𝑗 )) (3)

• Bilinear Similarity: this similarity has been used in [23, 26].
The similarity of a clip pair is given as:

sim(𝑎𝑖 , 𝑎 𝑗 ) = 𝑔(ℎ𝑖 )⊤W𝑠𝑔(ℎ 𝑗 ), (4)

where W𝑠 is the bilinear parameter.
Specifically, we conduct an experiment to compare the performance
of these two types of similarity metrics in Section 5.3.

The loss function used in this phase for contrastive learning is
a multi-class cross-entropy function working together with the
similarity metric. During the training in this phase, each training
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Figure 4: Illustration of an ensemble network structure for
cough classification in the downstream phase. The masking
generator is also included for random masking.

instance (consists of two clips from the same participant) in a batch
is a positive pair. Clips from different training instances (from dif-
ferent participants) formulate negative pairs. Each training instance
is then considered as a unique "class" (a unique participant), so the
multi-class cross-entropy is applied. This loss function is calculated
over the batch (batch size 𝐵 and 2𝐵 indicates the total number of
clips in a batch as we have two clips for each training instance) and
modelled as:

Lcontrastive = − log
exp(sim(𝑎𝑖 , 𝑎 𝑗 )/𝜏)∑2𝐵

𝑘=1 exp(sim(𝑎𝑖 , 𝑎𝑘 )/𝜏)
, 𝑘 ≠ 𝑖, (5)

where 𝜏 denotes the temperature parameter for scaling. Note that
in Equation (5), 𝑎𝑖 and 𝑎 𝑗 is the positive pair whereas 𝑎𝑖 and 𝑎𝑘
(𝑘 ≠ 𝑖) are all the negative pairs.

4.2 Downstream Cough Classification
In the downstream phase, a straightforward network architecture is
the feature encoder (𝑓 (·)) with an additional classifier. The feature
encoder is initialised with pre-trained weights (W𝑓 ) in the previous
phase and takes pre-processed audio clip as input. The encoded
feature ℎ𝑖 is then passed to the classifier. The classifier is a fully-
connected layer with 𝑑 (feature dimension of the encoded feature
ℎ𝑖 ) input neurons and one output node with sigmoid activation
function to output the probability and indicate whether the input
respiratory sound clip is COVID-19 positive (probability larger
than a threshold, e.g. 0.5) or negative (probability smaller than the
threshold). The network is fine-tuned with labelled data end-to-end
with typical binary cross-entropy classification loss.

Based on this straightforward architecture, we also explore and
design an advanced architecture (illustrated in Figure 4) with the
random masking mechanism and an ensemble structure. The mo-
tivation of introducing an ensemble structure for classification
is related to the random masking. Since the masking matrix is
generated randomly, the two branches in the ensemble structure
(𝑓1 (·) and 𝑓2 (·) in Figure 4) would have different masked time steps,
which leads the feature encoders to model the input audio and yield
encoded features from different perspectives. Thus, the ensemble
structure and the random masking mechanism is a harmonised
match and beneficial to each other. Unlike the above straightfor-
ward architecture, the classifier in the ensemble architecture has
2𝑑 input neurons as it takes the concatenated feature (the concate-
nation of two encoded vectors from 𝑓1 (·) and 𝑓2 (·)) as input.

Note that both 𝑓1 (·) and 𝑓2 (·) are initialised with the same pre-
trained weights from the contrastive pre-training phase. During
the fine-tuning process, both feature encoders may be updated
differently.

5 EVALUATION
In this work, we focus on investigating the following research ques-
tions: (1) RQ1:Whether introducing the contrastive pre-training has
better performance than conventional fully-supervised setting and
which similarity metric has the better performance in our cough
classification task? (2) RQ2: Does the random masking mechanism
help the cough classification performance and what is the most suit-
able masking configuration? (3) RQ3: By introducing the ensemble
framework in the downstream phase, could we achieve a further
improvement regarding the cough classification performance?

5.1 Experimental setup
5.1.1 Data Processing. As introduced in Section 3, we focus on two
public COVID-19 respiratory datasets. Considering that Coswara
dataset [28] has more participants and contains more audio sam-
ples than COVID-19 Sounds dataset [5], the Coswara dataset is
adopted as the pre-training dataset in this work. Note that for this
pre-training dataset, the annotated labels (indicating whether the
user is COVID-19 positive or negative) are not used. Furthermore,
since this work is more about respiratory sounds, breathing sounds
and cough sounds are selected for pre-processing and sampling
(detailed in Section 4.1.1), whereas audios of sustained phonation of
vowel sounds and counting sounds are ignored in the pre-training
phase. Consequently, COVID-19 Sounds is used as the dataset in
the downstream phase. To be more specific, in the downstream
phase, the whole COVID-19 Sounds dataset is randomly divided
into the training set (70%), validation set (10%), and testing set (20%).
For each raw audio sample, the same pre-processing procedure (de-
scribed in Section 4.1.1) is applied as well.

5.1.2 Implementation Details. In the pre-processing, the shape of a
processed clip 𝑎𝑖 is R64×96 as the number of mel-spaced frequency
bins 𝑁 is set to 64 and the sliding window size 𝑇𝑤 is 96 which
corresponds to 960 ms. The feature dimension 𝑑 is set to 64. In
the contrastive pre-training phase, the batch size 𝐵 is selected as
a large number (1024). As suggested by other contrastive learning
methods (e.g., [7]), the contrastive learning benefits from larger
batch sizes (within GPU capacity) as a larger batch allows the
model to compare the positive pair against more negative pairs.
In the downstream network, the dropout is also applied to avoid
over-fitting in the end-to-end fine-tuning process. The validation
set in the downstream dataset is used for tuning hyperparameter 𝑑
(the feature dimension of the feature encoder) and the dropout rate.
The batch size is 128 for the downstream phase. All experiments
(both the contrastive pre-training and the downstream phases) are
trained with Adam optimiser [19] (a 0.001 initial learning rate with
ReduceLROnPlateau9 decay setting) and executed on a desktop with
an NVIDIA GeForce RTX-2080 Ti GPU with PyTorch.

5.1.3 Evaluation Metrics. To evaluate the performance of differ-
ent methods, several standard classification evaluation metrics in-
cluding the Receiver Operating Characteristic - Area Under Curve
(ROC-AUC), Precision, and Recall are selected. In our experiments,
we report the average performance as well as the standard devi-
ation of 5 runnings of each method or configuration. In addition,

9https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1948



64 128 256
Feature Dimension

65

70

75

80

85

90

95

100

RO
C-

AU
C 

(%
)

dropout=0.0
dropout=0.2
dropout=0.5

(a) ROC-AUC

64 128 256
Feature Dimension

50

60

70

80

90

100

Re
ca

ll 
(%

)

dropout=0.0
dropout=0.2
dropout=0.5

(b) Recall

64 128 256
Feature Dimension

50

60

70

80

90

100

Pr
ec

isi
on

 (%
)

dropout=0.0
dropout=0.2
dropout=0.5

(c) Precision

64 128 256
Feature Dimension

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

(%
)

dropout=0.0
dropout=0.2
dropout=0.5

(d) Accuracy

Figure 5: The performance of different hyperparameter settings on the validation set.

Table 1: Results (on the testing set) of different models and configurations. For each result, the standard deviation is reported
in a bracket.

Model Self-supervise Pre-train Fine-tune ROC-AUC Recall Precision Accuracy Average F1
× × N/A 76.14 (0.21) 53.19 (2.29) 73.17 (1.87) 74.88 (0.22) 61.60

VGGish × ✓ × 85.02 (1.73) 67.42 (2.06) 78.55 (2.21) 80.71 (1.32) 72.56
× ✓ ✓ 87.34 (1.14) 69.49 (1.44) 83.15 (1.46) 83.12 (0.31) 75.71

GRU × × N/A 84.43 (0.88) 65.60 (1.43) 82.67 (1.89) 81.76 (0.39) 73.15
Transformer × × N/A 87.60 (0.71) 71.53 (1.12) 80.64 (1.19) 82.73 (0.41) 75.81

GRU-CP ✓ ✓ × 83.20 (0.43) 63.43 (1.82) 78.63 (1.22) 79.63 (0.31) 70.22
✓ ✓ ✓ 87.08 (0.35) 71.72 (2.53) 81.61 (2.26) 83.15 (0.32) 76.35

Transformer-CP ✓ ✓ × 84.34 (0.71) 64.94 (1.80) 78.56 (1.40) 80.02 (0.42) 71.10
✓ ✓ ✓ 88.83 (0.53) 73.07 (0.65) 81.99 (0.92) 83.74 (0.39) 77.27

we report the average F1 score which is calculated based on the
average Precision and average Recall.

5.2 Hyperparameter Fine-Tuning
To investigate how the dimension of encoded feature and dropout
rate influence the classification performance, all the combination of
the following hyperparameter values (within reasonable ranges) are
evaluated on the validation set: (1) Feature Dimension: [64, 128, 256];
(2) Dropout Rate: [0.0, 0.2, 0.5] (resulting in 9 combinations in to-
tal). Please note that we also run 5 times for each combination.
Figure 5 shows the average performance of four metrics and error
bars indicate the standard deviations. Based on these validation
results, 𝑑 = 64 and a 0.2 dropout rate achieve the best validation
performance and are used for the rest experiments. Since the fea-
ture encoder structure should be identical in both the pre-training
and the downstream phases, the same hyperparameter setting is
also applied in the pre-training phase.

5.3 Contrastive Pre-training Performance
5.3.1 Methods for Comparison. To evaluate the performance of
contrastive pre-training and the Transformer feature encoder, we
compare Transformer-CP (the suffix -CP means the method is
contrastive pre-training enabled) with several methods with mul-
tiple configurations. Other methods being compared include VG-
Gish/GRU/Transformer (without contrastive pre-training) andGRU-
CP. Recurrent Neural Networks (RNNs) are designed for handling
sequence data and have been adopted for COVID-19 cough clas-
sification research in [12, 25]. So, the GRU [8] is also included in

the comparison. VGGish [15] is a popular convolutional neural
network for audio classification. A pre-trained version10 that is
pre-trained on a large scale general audio dataset Audioset [10] is
also widely used in the community. Such a pre-trained VGGish has
also been applied in [5] to extract features for COVID-19 cough
classification. Note that the pre-training of VGGish is a conven-
tional fully-supervised pre-training with labelled data, which is
different from our contrastive pre-training. The configuration of
with or without the pre-training is summarised in the third column
of Table 1. In addition, the second column indicates the pre-training
setting. A ✓ means that the proposed self-supervised contrastive
pre-training is applied. For example, both the second and third
columns are ✓ for our Transformer-CP.

5.3.2 Performance Comparison. The experimental results of the
above methods are reported in Table 1. To be more specific, for
methods using pre-trained weights (either contrastive pre-training
or conventional pre-training for VGGish), we also explore the fine-
tuning option. In the fourth column of Table 1, a × represents
the pre-trained weightsW𝑓 are frozen and not be updated in the
downstream phase, whereas a ✓indicates W𝑓 is allowed to be
updated.

According to the table, the proposed Transformer-CP with fine-
tuning achieves the best performance (shown in bold) against all
the other methods. There are several additional findings that can
be noticed from the table. First, without pre-training, VGGish has

10Pre-trained weights of VGGish can be found at https://github.com/tcvrick/audioset-
vggish-tensorflow-to-pytorch/releases.
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Table 2: Results (on the testing set) of two types of similarity metrics that are used in the contrastive pre-training phase.

Model Similarity Metric ROC-AUC Recall Precision Accuracy Average F1

GRU-CP Cosine 87.08 (0.35) 71.72 (2.53) 81.61 (2.26) 83.15 (0.32) 76.35
Bilinear 87.25 (0.65) 71.99(1.97) 82.62 (1.92) 83.65 (0.32) 76.94

Transformer-CP Cosine 87.02 (0.53) 67.79 (2.12) 81.73 (1.54) 82.06 (0.33) 74.11
Bilinear 88.83 (0.53) 73.07 (0.65) 81.99 (0.92) 83.74 (0.39) 77.27

Table 3: Cough classification results (on the testing set) of different masking rates used in the contrastive pre-training phase.

Model Masking Rate (CP) ROC-AUC Recall Precision Accuracy Average F1
Transformer NA 87.60 (0.71) 71.53 (1.12) 80.64 (1.19) 82.73 (0.41) 75.81

0% 88.83 (0.53) 73.07 (0.65) 81.99 (0.92) 83.74 (0.39) 77.27
25% 89.17 (0.13) 73.05 (0.83) 82.29 (1.13) 83.84 (0.38) 77.40

Transformer-CP 50% 89.42 (0.51) 73.09 (0.43) 83.26 (0.28) 84.26 (0.12) 77.84
75% 89.13 (0.95) 72.66 (1.20) 82.01 (1.52) 83.62 (0.41) 77.05
100% 88.37 (0.57) 72.41 (0.64) 81.65 (0.82) 83.41 (0.41) 76.75

the worst performance (the first row) compared to GRU and Trans-
former. Using pre-trained VGGish weights (without fine-tuning)
provides almost 6% accuracy gain, which indicates that the pre-
trained VGGish representation is well-trained and powerful. For
all configurations that using frozen pre-trained representations
(the second, sixth, and eighth rows), although VGGish (the second
row) is the top performer, the performance of our Transformer-CP
(the eighth row) is very close to VGGish. This is remarkable as
it shows that our contrastive pre-trained (on a smaller scale and
unlabelled dataset) self-supervised feature representation is com-
petitive with a well-trained fully-supervised VGGish representation
(pre-trained on a much larger scale and well-annotated Audioset).
Second, the fine-tuning in the downstream task is important for all
pre-trained models, which is as expected. For both the conventional
pre-trained VGGish and contrastive pre-trained GRU/Transformer,
the fine-tuning could improve the accuracy by around 3%. Third, if
we compare GRU vs. Transformer and GRU-CP vs. Transformer-CP,
the Transformer-based methods outperform GRU-based methods
consistently. This justifies the selection of Transformer as the fea-
ture encoder in the proposed framework. Overall, the results show
that the proposed framework with contrastive pre-training achieves
a superior performance of cough classification.

5.3.3 Different Similarity Metrics. In Table 2, two similarity metrics
in contrastive learning are compared. For a fair comparison, two
different feature encoder structures, GRU-CP and Transformer-
CP, are explored. As shown in the table, using bilinear similarity
achieves consistent better performance with both structures on all
evaluation metrics, which demonstrates that the bilinear similarity
is more suitable for our cough classification task.

5.4 Random Masking Performance
In this part of the experiments, we turn to research on the pro-
posed random masking mechanism and different masking rates in
the contrastive pre-training phase. The experiment guideline for
this part is: we pre-train several Transformer-CPs with multiple
masking rates (0% to 100%) and then the pre-trained models are

fine-tuned in the downstream phase. The cough classification per-
formance of these models are listed in Table 3. Please note that in
the downstream phase, we do not apply the ensemble architecture
so that there is no random masking in the downstream phase for
results reported in the table.

As a baseline for comparison, we also include the performance
of Transformer (without any pre-training) in Table 3. In general,
all pre-trained models yield better results than the baseline Trans-
former and 50% masking outperforms other masking rates. When
the masking rate is increasing from 0% (no masking at all) to 50%,
we can witness a performance gain from the table. However, when
the masking rate is too large (e.g., 75% and 100%), the performance
decreases. This is not surprising. For example, in the extreme 100%
masking case, all the inputs are masked, which means there is no
attention between any time steps. As a result, the 100% masking
has the worst performance among different masking rate settings.

5.5 Ensembles Performance
In this section, we focus on exploring different ensembles. Table 4
summarises three ensemble methods. The first two are the ensemble
of our base Transformer feature encoder and other feature encoder
structures (VGGish and GRU). No pre-trained weights are applied
to these two ensembles. The third ensemble combines GRU-CP and
Transformer-CP with contrastive pre-trained weights. By jointly
comparing results given in Table 1 and Table 4, it can be seen that
the ensemble version demonstrates a better ability than a single
feature encoder based method.

Moreover, we investigate networks where the random mask-
ing is incorporated with the ensemble architecture (as shown in
Figure 4). For the ensembles presented in Table 5, both branches
are set as Transformer-CP. We manipulate the masking rate in the
downstream phase (rates given in the Masking (DS) column). In
addition, the pre-trained weights of the top performer in Table 3
(with 50% contrastive pre-training masking rate) are used for these
ensembles. Similar to the masking in the contrastive pre-training
phase, 50% masking rate in the downstream phase also performs
better than other masking rates. The above results confirm that the
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Table 4: Cough classification results (on the testing set) of different ensemble configurations.

Ensemble_1 Ensemble_2 ROC-AUC Recall Precision Accuracy Average F1
VGGish Transformer 87.58 (0.73) 70.30 (1.05) 82.46 (1.44) 83.10 (0.26) 75.90
GRU Transformer 87.24 (0.59) 72.56 (1.81) 81.10 (1.54) 83.20 (0.38) 76.59

GRU-CP Transformer-CP 88.90 (0.38) 72.77 (1.85) 83.59 (1.62) 84.04 (0.35) 77.81

Table 5: Results (on the testing set) of combining different masking rates with ensembles in the downstream phase.

Ensemble_1 Ensemble_2 Masking (DS) ROC-AUC Recall Precision Accuracy Average F1
0% 88.77 (0.87) 71.98 (0.67) 82.81 (0.59) 83.75 (0.38) 77.02
25% 89.02 (0.55) 71.93 (1.01) 82.85 (0.48) 84.15 (0.20) 77.00

Transformer-CP Transformer-CP 50% 90.03 (0.41) 73.24 (0.22) 84.57 (1.24) 84.43 (0.25) 78.50
75% 89.22 (0.24) 72.12 (0.32) 83.17 (0.21) 84.03 (0.58) 77.25
100% 89.55 (0.91) 71.21 (1.79) 82.85 (2.33) 83.93 (0.17) 76.59

Table 6: Comparison of inference speed of different model and configurations. Each method is benchmarked on the same
NVIDIA GeForce RTX-2080 Ti GPU.

Ensemble Model Self-supervise Pre-train Masking Rate (DS) Inference time (10−6 seconds)

×

VGGish × × N/A 6.39
× ✓ N/A 6.39

GRU × × N/A 8.34
Trasformer × × N/A 8.48
GRU-CP ✓ ✓ N/A 8.60

Transformer-CP ✓ ✓ N/A 8.52

✓

VGGish + Transformer × × N/A 12.58
GRU + Transformer × × N/A 14.26

GRU-CP + Transformer-CP ✓ ✓ N/A 14.36

Transformer-CP + Transformer-CP

✓ ✓ 0% 18.86
✓ ✓ 25% 24.53
✓ ✓ 50% 27.56
✓ ✓ 75% 32.36
✓ ✓ 100% 18.64

proposed ensemble architecture with the random masking could
further improve the classification performance.

5.6 Inference Speed
Table 6 lists the inference time (for one input instance) of each
model or configuration. Since the fine-tuning does not affect the
inference time, the fine-tuning configuration is removed for com-
parison in the table. Generally, for three different base feature en-
coder structures, the inference time of Transformer is on par with
GRU, whereas VGGish leads Transformer/GRU by a small margin
(around 0.002 milliseconds only). Although Transformer includes
attention computation, it processes each time step in the input
sequence in parallel, whereas GRU has to process each time step re-
currently. This might explain the similar computation cost between
Transformer and GRU. From the table, we notice also that using
contrastive pre-trained weights does not introduce a longer time
for inference. This is as expected as the major difference between
Transformer and Transformer-CP (or GRU vs. GRU-CP) is whether
loading the pre-trained weights. This weights initialisation process
almost has no influence on the inference speed.

An interesting and surprising finding is about the inference
time of using different downstream random masking rates (the
last five rows of Table 6). In theory, a larger masking rate should
run faster as more time steps are masked and not used in attention
calculation. According to the table, however, 75% rate has the largest
inference time and 0% and 100% are all smaller than the rest masking
rates. This can be explained by the implementation of the masking
generator. In the implementation, the default masking matrix is an
all-ones matrix or an all-zeros matrix (only used for masking rate
100%), where 0 means being masked and vice versa. For a given
masking rate, 1 will be updated to 0 in the matrix through a for
loop. This loop operation takes longer if more elements need to be
updated (e.g., 75% rate), which causes the larger inference time for
the 75% setting. Overall, even the largest time cost in the table is
only 32.36 × 10−6 seconds (around 0.03 milliseconds). Such a low
time cost would not be a bottleneck or limit the application of the
proposed framework.

From another point of view, without the proposed contrastive
pre-training, multiple models need to be trained if multiple datasets
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are available. As a result, training time will be done per model with-
out domain transfer, which is a potential bottleneck for large-scale
deployments. However, our proposed framework is able to address
this training bottleneck through the contrastive pre-training phase.

6 CONCLUSION
In this paper, we propose a novel framework for respiratory sounds
based COVID-19 cough classification. This study appears to be the
first study to leverage unlabelled respiratory audios in the area. In
order to do so, we introduce a contrastive pre-training phase in
which the Transformer-based feature encoder is pre-trained with
unlabelled data in a self-supervised manner. Moreover, a random
masking mechanism is explicitly proposed to work with the Trans-
former feature encoder, which aims to improve the robustness of the
feature encoder. In addition, we have explored an ensemble-based
network architecture in the downstream phase. Experimental re-
sults demonstrate that the designed ensemble network with random
masking achieves top performance. The findings of this research
provide a new perspective and insights for cough classification.
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